0.5b 这种才是最有用的,因为它可以万能地微调成单一小任务。
而且它参数量小,本地跑,运行快。
以前的那些nlp任务都可以用这种万金油来微调。
比如文章提取,文章样式整理,数据格式转换,文章校验,快递信息提取等。
你可能会说我为什么不用传统的nlp来干? 主要是现在的llm模型,从训练到部署已经非常的流水线了,不会深度学习的人也能训练一个并部署,这个流水线简单到,真的只需要处理数据集而已。
整个过程你甚至不需要写…。
如何看待不超过1879元的Mac mini(M4+16/256GB+票),易用性吊打同级其他台式电脑?...
如何看待Ollama基于Go语言开发而不是别的编程语言?...
写业务的话,go是不是垃圾?...
如果看待林丹这句话 “网球的强度远远没有羽毛球大”?...